A solution of the Affine Quadratic Inverse Eigenvalue Problem
نویسندگان
چکیده
The quadratic inverse eigenvalue problem (QIEP) is to find the three matrices M,C, and K, given a set of numbers, closed under complex conjugations, such that these numbers become the eigenvalues of the quadratic pencil P (λ) = λM + λC + K. The affine inverse quadratic eigenvalue problem (AQIEP) is the QIEP with an additional constraint that the coefficient matrices belong to an affine family, that is, these matrices are linear combinations of substructured matrices. An affine family of matrices very often arise in vibration engineering modeling and analysis. Research on QIEP and AQIEP are still at developing stage. In this paper, we propose three methods and the associated mathematical theories for solving AQIEP: A Newton method, an Alternating Projections method, and a Hybrid method combining the two. Validity of these methods are illustrated with results on numerical experiments on a spring-mass problem and comparisons are made with these three methods amongst themselves and with another Newton method developed by Elhay and Ram (2002). The results of our experiments show that the hybrid method takes much smaller number of iterations and converges faster than any of these methods.
منابع مشابه
The use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملSolutions to a quadratic inverse eigenvalue problem
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کامل